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Abstract. We present here a derivation of phenomenological boundary conditions for envelope
functions at the interface between an InAs layer and a GaSb layer. The overlap of the valence
band of GaSb with the conduction band of InAs leads to a coupling between electrons with total
angular momentum 1/2 and holes with total angular momentum 3/2. The method that we use to
match these wave-functions is that of the minimizing of the total energy of the system including
the surface energy. We consider the different spinor characters of the states explicitly, and derive
the required boundary conditions, which are not dependent on any specific microscopic model.
The proposed approach is general, and may be used to obtain boundary conditions for other
complicated cases of interfaces.

1. Introduction

There is a challenge in the investigation of InAs/GaSb heterostructures. The strong
motivation for exploring the system is its unique band alignment: the bottom of the
conduction band in InAs lies below the top of the valence band in GaSb, so there is
an overlap between the valence band in GaSb and the conduction band in InAs. From
either side of the interface, there are allowed states that differ from each other in total
angular momentum and in the sign of the effective mass. As a result, the ground state
of the system is an electron gas in the InAs layer, coexisting with a hole gas in the
GaSb layer (see figure 1). The coexistence of electrons and holes on different sides of
the interface has been experimentally confirmed (see, e.g., reference [1]). This makes
the system a natural candidate for investigation if one is trying to detect Bose–Einstein
condensation of excitons [2–5]. This aspect of the system has been studied theoretically [6–
8]. Experimentally, evidence has been obtained of an excitonic ground state for a specific
InAs/GaSb structure [9].

The system also has considerable potential as regards device application. One
feature making this apparent is the strongly non-linear behaviour of the current–voltage
characteristics that was observed in measurements of vertical transport through GaSb–InAs–
GaSb quantum wells. When the voltage reaches a certain value, a sharp drop in the current
is measured [10–13].

The definition of boundary conditions for the interface between InAs and GaSb is
one of the major keys to the understanding of this system. It is important for theoretical
investigation of all of the aspects of the system that were described above. The coupling
between the s-like conduction electrons and the p-like valence holes is a complicated
problem. While the conduction band in InAs is quite simple, and a good approximation for
it is given by a parabolic dispersion relation, the valence band in GaSb has a complicated
structure, and is described by the Luttinger 4× 4 Hamiltonian [14]. There are two bulk
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Figure 1. The InAs/GaSb band structure. We do not show band bending here.

valence sub-bands—those of the heavy and the light holes; both are anisotropic and doubly
degenerate. We consider a thin layer of each material, which leads to size quantization, and
while the quantization of the conduction electron in the InAs layer is simple, the quantization
of the valence band leads to a number of non-trivial kinetic and optical phenomena caused
by the hybridization between the heavy and the light holes, and anisotropy of the spectrum
[15–19]. Finally, we need to couple the simple quantized electron sub-bands and the
complicated quantized hole sub-bands.

Previous work that dealt with the boundary conditions for heterostructures usually
consisted in some generalization of the continuity of the wave-functions, and the
conservation of the quantum mechanical current normal to the interface [20–24, 26–32].
In most of the studies, the first condition was derived assuming the envelope function to
be continuous at the interface [21–26, 28–30]. Harrison [20] generalized this assumption,
by multiplying the envelope function and its normal derivative by different parameters,
which depend on the energy and the transverse wave-vector. The second condition is
usually obtained by assuming that the kinetic energy has a Hermitian form, and that
the effective mass has a spatial dependence. Integration of the Schrödinger equation
across the interface yields the boundary condition [21, 22, 26, 29–31]. However, for
systems in which we need to match states with different symmetries and different effective
masses, the assumption of continuity of the envelope function is no longer justified. It
is also impossible to integrate the Schrödinger equation across the interface, because it
is impossible to write down such an equation for the region between two materials with
different symmetries and different numbers of wave-function components. This is the case
for InAs/GaSb heterostructures due to the unique band alignment. Another example is
that of GaAs/AlxGa1−xAs heterostructures, for which there is a mixing between0 and X
conduction band valleys.

In order to derive physical boundary conditions, we have to remember that the interface
is not just a mathematical surface, dividing two materials with different Bloch functions.
We can consider Bloch functions only at some distance from the interface, which has the
scale of the lattice constant. Within this distance, the electric potential is created by the
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atoms of the two different materials, and the wave-functions are strongly distorted from
their bulk forms.

However, the envelope functions, which describe the spatially dependent amplitude of
the wave-function, do not vary within the atomic scale. So, within the framework of the
envelope function, we can expect that the details of the microscopic structure of the interface
will enter only as the coefficients in the boundary conditions. Nevertheless, the degeneracy
of the valence band and the different symmetries of the Bloch functions on either side of the
interface prevent us from using one of the simplifying assumptions of [20–24, 26–32]. First
of all, there is no reason to assumeab initio that the envelope functions are continuous at
the interface. Second, the condition that the normal current component must be continuous
at the interface is not enough on its own to provide a number of boundary conditions for
several wave-function components. The latter fact is especially important for the InAs/GaSb
interface, for which the numbers of wave-function components on either side of the interface
are different.

A number of model boundary conditions have been suggested in references [33–38].
In these papers, the valence band was simplified: it was taken to be non-degenerate and
spherically symmetric, so the envelope functions of the two materials were considered as
scalars. Such a simplification leads to the loss of some of the interesting spectral and
transport phenomena of the system [15–19].

In this paper we present the derivation of phenomenological boundary conditions for
envelope functions, making use of the method of invariants [41]. These boundary conditions
do not depend on a specific microscopic model, and have the same degree of validity as
the envelope-function approximation itself. The microscopic nature of the interface enters
only in the values of the phenomenological constants. The first step in this direction was
made by one of us [39]; in that earlier work, a variational approach was used for the
derivation of a particular boundary condition. Here we generalize this approach to obtain
all of the boundary conditions for the case of spinor envelope functions with different
angular momenta (and, consequently, with different number of components) on either side
of the interface.

Such a generalization is absolutely necessary for the following reasons. First, the
problem is general. It arises always when the materials to be matched have different
symmetries of their electron spectra, e.g., electrons at the Ge/Si interface (L/X valleys),
and the0/X transition at the interfaces between different III–V materials (see, e.g., [48]).
Second, in the case of different ranks of matching spinors (in InAs–GaSb), even such
an important result as the number of branches in the spectrum cannot be predictedab
initio without correct boundary conditions. The problem is non-trivial, because the formal
combination of two generally accepted approximations, spinless electrons in InAs and
fourfold-degenerate holes in GaSb, leads to an incorrect result. A phenomenological
approach allows one to solve this class of problems. In the present paper we develop
this approach for the particular and extremely important case of InAs–GaSb. It provides
us with a way to consider the special features of this system, such as the anisotropy and
non-parabolicity of the GaSb hole sub-bands, and the hybridization between the GaSb heavy
and light holes and the InAs electrons.

The core of our approach is minimizing the total energy, including the surface energy.
It is well known that for a uniform material the quantum mechanical variation principle
leads to the Schrödinger equation [40]. We used this principle to derive the Schrödinger
equations for the two materials, and the boundary conditions for the interface between them.
This derivation can be applied to any interface between two media, and, in particular, for
boundary conditions that match states with different symmetries and different numbers of
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components. In the next section we will describe the derivation of the boundary conditions
from the principle of minimal energy. In the third section we clarify the meaning of
the general conditions that we derived by implementing them in several important physical
cases. We study properties of the interface between arbitrary materials, an interface between
two identical materials, boundary conditions in the isotropic approximation, etc.

2. Derivation of the boundary conditions

In this section we derive the boundary conditions for envelope functions by minimizing
the total energy including the surface energy. For this purpose, we first express the total
energy in terms of electron and hole envelope functions. The assumptions that we use
are the same assumptions as justify the envelope-function approximation in semiconductor
heterostructures. First, we will define the framework that we use. As was mentioned above,
the total angular momentum for the valence states is 3/2, so the hole wave-functions are
four spinors. The total electron angular momentum is 1/2. Quite often, for simplicity, the
electron states are treated as a single-component wave-function [23, 33, 35, 37, 38]. We
want to match the electron states with the hole states, and considering holes as spinors and
electrons as scalars we have to match fermions with bosons, which leads to decoupling.
Because of this, the spinor character of the electrons cannot be neglected, and we represent
electron states as 2-spinors:

9e =
(
9e,1/2
9e,−1/2

)
9h =


9h,3/2
9h,1/2
9h,−1/2

9h,−3/2

 . (2.1)

The geometry of the system is as follows: to the left,−Lc < z < −ac, there is an InAs
layer which is a quantum well for electrons; to the right,av < z < Lv, there is a GaSb
layer which is a quantum well for holes. Between the two materials there is an interface
region which we define to be some region around the planez = 0: −ac < z < av. We
assume that the following condition is satisfied:

Lc, Lv � ac, av > a0c, a0v (2.2)

wherea0c and a0v are the InAs and GaSb lattice constants respectively. This assumption
makes the application of the envelope-function approximation valid for both materials.

The structure of the complete wave-function9(r) near the interface is very complicated
because of the complicated electric potential in this region (figure 2). Bulk Bloch functions
exist, in both materials, only at some distance from the interface, which is larger than or
about the size of the unit cell. The electric potential created by the atoms in each material
penetrates across the interface, and exact electron wave-functions near the interface can be
substantially different from the bulk Bloch functions. Beyond the interface region, the wave-
function in each material is proportional to the Bloch function. Using the envelope-function
approximation, we can write down the wave-functions, away from the interface:

9e,j (r) = ψe,j (r)ue,j (r) − Lc < z < −ac (2.3a)

9h,j (r) = ψh,j (r)uh,j (r) av < z < Lv. (2.3b)

Here ue(r), uh(r) are the Bloch functions, andψe(r), ψh(r) are the envelope functions
in the InAs, GaSb layers respectively. Again, the hole functions are 4-spinors, and the
electrons functions are 2-spinors. (Thej th component of the complete wave-function is the
product of thej th components of the Bloch function, and the envelope function.)
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Figure 2. The InAs/GaSb heterostructure near the interface. At distances beyond a few lattice
constants from the interface, the periodic potential is not affected by the interface. Near the
interface, the potential is strongly distorted due to mutual penetration of the potentials of different
lattices.

The envelope functions vary substantially only on the macroscopic scalesLc, Lv, and
in the interface region their variation can be neglected. Thus, the wave-function in the
interface region can be written as a linear combination:

9(r) = Fe(r)ψe(x, y,0)+ Fh(r)ψh(x, y,0). (2.4)

HereFe(r) is a 2-spinor, andFh(r) is a 4-spinor; these are distorted Bloch functions in the
interface region.

The Schr̈odinger equation for the total wave-function, in all of the regions, can be
obtained from the variational functional

ε =
∫ [
− h̄2

2m0
|∇9|2+ (U − E)|9|2

]
d3r (2.5)

whereU(r) is the lattice potential and the integration is carried out over the whole system.
We will show that the minimization of this functional can provide not just the Schrödinger
equation for the envelope functions but also boundary conditions for them.

We can break the integration into a sum of the integrals for each region:

ε = εe + εh + εsurf (2.6a)

εe =
∫
−Lc<z<−ac

εh =
∫
av<z<Lv

εsurf =
∫
−ac<z<av

. (2.6b)

Hereεe, εh are the energies of the bulk InAs and GaSb respectively, andεsurf is the surface
energy.

The functionalsεe, εh can be calculated with the help of equation (2.3). Each of the
integrals can be divided into a sum of the integrals over separate unit cells. Inside every
unit cell, the envelope functions and their derivatives are considered to be constants. The
Bloch functions are normalized with respect to the volume of the unit cell. For the electron
functional, the result is the replacement of the electron free mass with the electron effective
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mass in InAs. For the holes, the calculation is more complicated, since we need to consider
also the spin–orbit coupling. The calculation of the valence band effective Hamiltonian was
performed by Luttinger and Kohn [14]. We will use here their results, expressed in terms
of the system invariants [41]:

εe =
∫ ∞
−∞

∫ z=0

z=−Lc

h̄2

2me
∇ψ†e ∇ψe − Eψ†eψe d2r dz (2.7a)

εh =
∫ ∞
−∞

∫ z=Lv

z=0
− h̄2

2m0

[(
γ1+ 5

2
γ2

)
∇ψ†h ∇ψh − γ3∇αψ†h (JαJβ + JβJα)∇βψh

]
− h̄2

m0
(γ3− γ2)

[(
Jx
∂ψh

∂x

)†(
Jx
∂ψh

∂x

)
+
(
Jy
∂ψh

∂y

)†(
Jy
∂ψh

∂y

)
+
(
Jz
∂ψh

∂z

)†(
Jz
∂ψh

∂z

)]
+ (1− E)ψ†hψh d2r dz (2.7b)

whereJ is the total angular momentum vector, for the hole states. In the second term of
equation (2.7b) we use the summation rule.γ1, γ2, andγ3 are the Luttinger parameters for
GaSb.1 ≈ 150 meV is the energy difference between the bottom of the conduction band
in the InAs layer and the top of the valence band in the GaSb layer.

The functionalεsurf is calculated with the help of equation (2.4), in the same way as
was described for the functionalsεe, εh. The exact calculation is very complicated, due to
the complicated structure of the potential and the exact wave-function. But the result is a
Hermitian form ofψe andψh:

εsurf =
∫ ∞
−∞

ψ
†
hAhψh + ψ†eAeψe + ψ†hBψe + ψ†eB†ψh

∣∣
z=0 d2r. (2.8)

HereAe is a 2×2 matrix, and represents the interface energy of the electron states.Ah
is a 4×4 matrix, which represents the interface energy of the hole states.B is a 4×2 matrix,
and represents the energy that is related to tunnelling between the two wells. The units of
the matrix elements are [E L]—energy multiplied by length. The characteristic values of
the energy and length are respectively the width of the band and the lattice constant. The
matrices have to obey the symmetry of the problem. In particular, they have to be symmetric
with respect to rotations ofπ/2 about thez-direction. The rotation generation operator is
Jz. So the symmetry condition can be written as

exp

(
i
π

2
Jz

(
3

2

))
Ah = Ah exp

(
i
π

2
Jz

(
3

2

))
(2.9a)

exp

(
i
π

2
Jz

(
1

2

))
Ae = Ae exp

(
i
π

2
Jz

(
1

2

))
(2.9b)

exp

(
i
π

2
Jz

(
3

2

))
B = B exp

(
i
π

2
Jz

(
1

2

))
. (2.9c)

Here Jz(S) is the matrix of the angular momentumz-projection. If the total angular
momentumS = 3/2, it is a 4×4 matrix, and ifS = 1/2, it is the Pauli matrixσz. We work
in the representation whereJz(S) is diagonal. exp[(iπ/2)Jz(S)] is the operator for rotation
by π/2. Comparing each matrix element from either side of each equation, we see that in
order to satisfy the equations bothAe andAh have to be diagonal. The only non-vanishing
matrix elements ofB areB21 andB32. These limitations reduce the number of parameters
in the problem. (More precisely, the symmetry of the interface is lower, and does not have
a fourfold axis. However, the corresponding anisotropy is small and we neglect it [43].)
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Now we will vary the energyε with respect toψ†h, and with respect toψ†e . The variation
vanishes near the point of minimum energy, so the condition that we apply here is

0= δε = δεe + δεh + δεsurf . (2.10)

After integration by parts with respect toz, we have contributions to the surface
functional from the integrated terms of the functionalsεe, εh. The contributions come
from the terms which include partial derivatives, with respect toz. These integrated terms
have non-vanishing value at the boundary,z = 0. For example, the contribution from the
variation with respect toψ†e is∫ ∞
−∞

∫ z=0

z=−Lc

∂ δψ
†
e

∂z

∂ψe

∂z
d2r dz =

∫ ∞
−∞

δψ†e
∂ψe

∂z

∣∣∣∣
z=0

d2r −
∫ ∞
−∞

∫ z=0

z=−Lc
δψ†e

∂2ψe

∂z2
dz d2r.

(2.11)

The integrated part depends only on the value ofδψe at the interface, and has to be added
to the functionalεsurf .

The finite result of the variation with respect toψ†e , ψ†h is

0=
∫ ∞
−∞

∫ z=0

z=−Lc
δψ†e

(
− h̄2

2me
∇2ψe − Eψe

)
d2r dz (2.12a)

0=
∫ ∞
−∞

∫ z=Lv

z=0
δψ
†
h

(
h̄2

2m0

[(
γ1+ 5

2
γ2

)
∇2ψh − 2γ3(J · ∇)2ψh

+ 2(γ3− γ2)

(
∂2

∂x2J
2
x +

∂2

∂y2J
2
y +

∂2

∂z2J
2
z

)
ψh

]
+ (1− E)ψh

)
d2r dz

(2.12b)

0=
∫ ∞
−∞

δψ†e

(
h̄2

2me

∂ψe

∂z
+Aeψe + B†ψh

)
d2r

∣∣∣∣
z=0

(2.12c)

0=
∫ ∞
−∞

δψ
†
h

(
h̄2

2m0

[(
γ1+ 5

2
γ2− 2γ2J

2
z

)
∂ψh

∂z
− γ3(JzJx + JxJz)∂ψh

∂x

− γ3(JzJy + JyJz)∂ψh
∂y

]
+ (Ahψh + Bψe)

)
d2r

∣∣∣∣
z=0

. (2.12d)

The first equation yields the Schrödinger equation for the electrons, where we replace
the free-electron mass with its effective mass in InAs. The second equation yields the
Schr̈odinger equation for the holes, where the Hamiltonian is the Luttinger Hamiltonian
[14]. From the last two equations, we obtain the following boundary conditions for the
interface between the two layers:

Aeψe + B†ψh = − h̄2

2me

∂ψe

∂z
(2.13a)

Bψe +Ahψh = − h̄2

2m0

[(
γ1+ 5

2
γ2− 2γ2J

2
z

)
∂ψh

∂z
− γ3(JzJ‖ + J‖Jz) · ∇‖ψh

]
. (2.13b)

Here we use the following notation for the in-plane vectors:J‖ = (Jx, Jy), ∇‖ =
(∂/∂x, ∂/∂y). The hole function is on the right-hand side of the interface and the electron
function is on the left. We used the representation from [42] for the angular momentum
matrices, and the explicit form of the boundary conditions is as follows:

Ae,11ψe,1/2+ B?21ψh,1/2 = −
h̄2

2me

∂ψe,1/2

∂z
(2.14a)
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Ae,22ψe,−1/2+ B?32ψh,−1/2 = − h̄2

2me

∂ψe,−1/2

∂z
(2.14b)

Ah,11ψh,3/2 = − h̄2

2m0

[
(γ1− 2γ2)

∂ψh,3/2

∂z
−
√

3γ3

(
∂ψh,1/2

∂x
− i
∂ψh,1/2

∂y

)]
(2.14c)

Ah,22ψh,1/2+ B21ψe,1/2 = − h̄2

2m0

[
(γ1+ 2γ2)

∂ψh,1/2

∂z
−
√

3γ3

(
∂ψh,3/2

∂x
+ i
∂ψh,3/2

∂y

)]
(2.14d)

Ah,33ψh,−1/2+ B32ψe,−1/2

= − h̄2

2m0

[
(γ1+ 2γ2)

∂ψh,−1/2

∂z
+
√

3γ3

(
∂ψh,−3/2

∂x
− i
∂ψh,−3/2

∂y

)]
(2.14e)

Ah,44ψh,−3/2 = − h̄2

2m0

[
(γ1− 2γ2)

∂ψh,−3/2

∂z
+
√

3γ3

(
∂ψh,−1/2

∂x
+ i
∂ψh,−1/2

∂y

)]
. (2.14f)

From this we see that there is a direct coupling between the electron and the light-hole
components of the hole functions (components with total angular momentum projections
on the z-direction equal to±1/2), while the coupling to the heavy-hole components
(components with total angular momentum projections on thez-direction equal to±3/2) is
through the derivatives of the hole function.

We can reduce the number of parameters in this problem by assuming that the system
is invariant under a change in the sign of the total angular momentum. According to this
assumption, states that have the samez-component of the total angular momentum, but with
different signs, have the same energy. In particular, they have the same surface energy.
This yields the following equations:

Ae,11 = Ae,22 Ah,11 = Ah,44 Ah,22 = Ah,33 B21 = B32. (2.15)

Here the numbers given as subscripts label the matrix elements. This and the assumption
that the matrix elements have real values reduce the number of parameters in this problem
to 4.

3. Discussion

The main result of this paper is the boundary condition equations (2.13) and (2.14) for the
InAs/GaSb interface. Generally speaking, boundary conditions of this kind can be used for
interfaces between any materials. The specifics of the material determine the structure of the
matricesA andB and also the effective-mass tensor in the rhs of equation (2.13). The values
of the matrix elements depend on the microscopic structure of the interface (see section 2)
and this is the only effect of the microscopic structure. For instance, experimentally the
InAs/GaSb interface can be formed of InSb or of GaAs. For these two cases one can expect
different values of the matrix elements. In this section, we clarify the boundary conditions by
applying them to a number of important physical situations. First, we consider an interface
between arbitrary materials and show that the boundary conditions of the type (2.13) lead
to known results if the interface is impenetrable. In the case of an interface between two
identical materials with simple band structure, our conditions are equivalent to the presence
of a potential barrier. Then we produce simplified boundary conditions for the isotropic
approximation.

Finally, we consider some approximations for InAs/GaSb interfaces by means of which
equation (2.13) can be simplified. In many practically important cases, hole sub-bands are
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split so strongly that only one of them (the heavy-hole sub-band) is occupied. For that
reason it is desirable to have boundary conditions that include only this band. We derive
these boundary conditions from the general case.

3.1. Interfaces between arbitrary materials

Generally speaking, almost any interface between different materials is impenetrable.
Indeed, as was mentioned above, the units of the interface matrix elementsAe, Ah, andB
are [E L]—energy multiplied by length. The length scale of the interface region is around
the lattice constant, so a good estimate for the interface matrix elements is ¯h2/2

√
memha0,

whereme,mh are the effective masses of electrons and holes respectively. Since the length
scale of the interface is of the order of the lattice constant and much smaller than the
widths of the quantum wells (equation (2.2)), the order of magnitude of the interface matrix
elements is much larger than the order of the rhs of the boundary condition equations (2.13):

A ∼ B ∼ h̄2

2
√
memha0ca0v

� h̄2

mhLv
,
h̄2

meLc
. (3.1)

In the leading approximation, the rhs of equation (2.13) can be neglected. Then equation
(2.13) is reduced to a system of homogeneous equations for wave-functions at the interface.
In general, the determinant of this system is non-zero, and as a result the wave-functions at
the interface equal zero. This boundary condition corresponds to an impenetrable barrier,
i.e., two separate infinite quantum wells for electrons and holes.

So, in general, the penetration across an interface is an effect of the order ofa0/L.
The penetration can be much larger if the determinant of the system is anomalously small.
The value of the determinant depends on the parameters of the materials (symmetry, lattice
geometry, Bloch functions). The determinant can be expected to be small if there is some
similarity of the materials on either side of the interface. This is the case for a large number
of practically important cases in which the materials are specifically chosen to be alike,
such as different III–V materials (the Bloch functions of the same bands in these materials
are similar), for which the penetration across an interface between0 points of different
materials is typically strong. One of the most important examples is the (001) GaAs/AlAs
interface, for which the surface energy can be discarded, and the boundary conditions are
the continuity of the wave-functions and that of(1/m)(∂ψ/∂z). For the0/X matching,
the same interface is nearly impenetrable [34, 48], and boundary conditions of the type
of equation (2.13) are more appropriate [28]. One should keep in mind that, even if the
penetration of wave-functions across the barrier is as small asa0/L, it can still lead to
substantial effects, e.g., a significant shift of the energy levels.

For some specific choice of the materials, the determinant may appear to be zero. That
means that there are linear relations between the left-hand sides of equations (2.13). If
equations (2.13) containn scalar equations and there arer < n relations between their left-
hand sides, then these equations are consistent only if there arer similar relations between
their right-hand sides. These latterr relations provider boundary conditions. Now, among
all n scalar equations (2.13), there are onlyn− r linearly independent equations, and they
provide the rest of the boundary conditions. The simplest example of such a situation is for
a barrier between two identical materials, which is considered in the next subsection.

The general approach used in this article is applicable to the interface of almost any
pair of semiconductors, including electron/hole interfaces, and interfaces between different
valleys (e.g.,0/X, 0/L, and L/X). To obtain a boundary condition in each particular
case, it is necessary to write down a variational functional (2.5) to break it into bulk and
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surface terms (see equation (2.6)) and to find an invariant expression for the surface energy
(analogous to equation (2.8)).

3.2. Interfaces between identical materials with simple band structure

In this section, as an illustration of the application of equation (2.13) and how to check
it, we consider the simplest situation: boundary conditions matching wave-functions of the
same band at the interface between two identical materials with simple band structure. In
this case the wave-functions on both sides of the interface are scalars, and the effective-mass
tensors are equal. For a scalar wave-function, equation (2.13) takes the form

AψR + B∗ψL = h̄2

2m

∂ψR

∂z
(3.2a)

BψR +AψL = − h̄
2

2m

∂ψL

∂z
(3.2b)

whereA and B are scalar parameters (there is only one parameterA, because of the
symmetry of the barrier). An interface with these matching conditions is equivalent to a
potential barrier whose heightV is much larger than the energy and the widthε, where

A = q cosh(qε)

sinh(qε)
(3.3a)

B = − q

sinh(qε)
. (3.3b)

Here q = √2m1V /h̄ andm1 is the effective mass in the barrier region. Ifqε � 1, then
A = −B = 1/ε. In this extreme case, equations (3.2) are consistent only if the normal
derivatives are continuous, and the boundary conditions become

ψR − ψL = ε h̄
2

2m

∂ψR

∂z
(3.4a)

∂ψR

∂z
= ∂ψL

∂z
. (3.4b)

If the width of the barrier goes to zero, then these conditions are reduced to the continuity
of the wave-functions and that of their normal derivatives.

3.3. The isotropic approximation

It is interesting to note that equation (2.13) is invariant with respect to any rotation around
thez-axis. In other words, the symmetry of the boundary condition equation (2.13) is higher
than the symmetry of the Hamiltonian equation (2.7b).

To simplify the calculations, an isotropic approximation is sometimes used for the hole
spectrum [44]. It is defined by replacing bothγ2 andγ3 with

γ = 2γ2+ 3γ3

5
. (3.5)

Then the boundary condition equation (2.13b) becomes

Ahψh + Bψe = − h̄2

2m0

[(
γ1+ 5

2
γ

)
(n · ∇)− γ [(n · J)(J · ∇)+ (∇ · J)(J · n)]

]
ψh

(3.6)
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wheren is the unit vector normal to the interface. This result includes all of the physical
invariants of the problem, up to second order inJ , and is exactly what we would expect
from symmetry considerations.

3.4. Reduction to scalar wave-functions for the electrons and for the holes

There is a practically important problem of treating the InAs/GaSb interface in the case
in which only the ground hole sub-band is of importance. It is logical for such a case to
have simplified boundary conditions, which couple a scalar electron function with the scalar
function of the ground hole sub-band. In this section we derive such a condition.

We consider two thin layers, one of InAs and one of GaSb, sandwiched between two
high potential barriers. The envelope functions vanish at the interfaces with the potential
barrier. The InAs layer is a quantum well for electrons, and the GaSb is a quantum well for
holes. When the wells are narrow, the second heavy-hole and the first light-hole sub-bands
are well above the first heavy-hole sub-band, and the light-hole components of the hole
wave-function of the first heavy-hole sub-band are small compared with the heavy-hole
components. A natural approach to this problem is to simplify the description, eliminating
small components from the problem, and to reduce it to the matching of the electron and
heavy-hole components of the hole wave-function. To carry out such a programme, it
is necessary to separate the problem for the light-hole components, calculate them, and
substitute the result in the equations for the heavy-hole components. For this separation, it
is convenient to introduce the notation

ψe =
(
ψe,1/2
ψe,−1/2

)
ψ(1/2) =

(
ψh,1/2
ψh,−1/2

)
ψ(3/2) =

(
ψh,3/2
ψh,−3/2

)
. (3.7)

So the hole envelope function takes the form

ψh =
(
ψ(1/2)

ψ(3/2)

)
. (3.8)

The projections of the boundary conditions (equation (2.13)) onto the subspaces±1/2
and±3/2 gives

Aeψe + B†ψ(1/2) = − h̄2

2me

∂ψe

∂z
(3.9a)

A1/2ψ
(1/2) + Bψe = − h̄2

2m0

[
(γ1+ 2γ2)

∂ψ(1/2)

∂z
−
√

3γ3

(
σz

∂

∂x
+ i

∂

∂y

)
ψ(3/2)

]
(3.9b)

A3/2ψ
(3/2) = − h̄2

2m0

[
(γ1− 2γ2)

∂ψ(3/2)

∂z
−
√

3γ3

(
σz

∂

∂x
− i

∂

∂y

)
ψ(1/2)

]
. (3.9c)

Hereσz is the Pauli 2×2 spin matrix. Assuming that the boundary conditions do not depend
on the sign of the spinz-projection,Ae, A1/2, A3/2, andB can be considered as numbers.

We consider a weak coupling between the electrons and the holes, i.e., the case where
the rhs in equations (3.9) is of a higher order of magnitude than the lhs. In the first
approximation, the rhs is neglected, and the boundary conditions for the interface between
the layers,z = 0, are reduced to

ψ(0)
e = 0 ψ

(0)
h = 0. (3.10)

In this case the electron and hole wells are decoupled, and the eigenvalues in the electron
and hole wells can be different:

Heψ
(0)
e = Eeψ(0)

e (3.11a)

Hhψ
(0)
h = Ehψ(0)

h . (3.11b)
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HereHh, He are the effective Hamiltonians for the holes and for the electrons respectively.
We consider the coupling as a small perturbation to the decoupled problem. We can

expand the envelope functions of the coupled problem in the solutions of the decoupled
problem:

ψe = ueψ(0)
e + δψe (3.12a)

ψh = uhψ(0)
h + δψh (3.12b)

where the correction to the first approximation is orthogonal to it.ue and uh satisfy the
relations

ue =
∫ 0

−Lc
ψ†(0)e ψe dz uh =

∫ Lv

0
ψ
†(0)
h ψh dz. (3.13)

These relations can be used to findue anduh. For this purpose it is necessary to multiply
the effective Schr̈odinger equation for the electron and the hole by the decoupled solutions
ψ
†(0)
e andψ†(0)h respectively, and to integrate with respect toz over the relevant well region.

Then ∫ 0

−Lc
ψ†(0)e (He − E)ψe dz = 0 (3.14a)∫ Lv

0
ψ
†(0)
h (Hh − E)ψh dz = 0. (3.14b)

The Hamiltonians are Hermitian, so we can operate, using the terms that do not consist
of derivatives with respect toz, on the unperturbed wave-functions, and use the definition
of the amplitudes (equation (3.13)) to simplify the calculation. The terms which consist
of derivatives with respect toz are integrated twice by parts. The integrated terms have
non-vanishing contributions only from the interface between the layers. The results are∫ 0

−Lc
ψ†(0)e Heψe dz = Eeue − h̄2

2me

[
dψ†(0)e

dz
ψe

]
z=0

(3.15a)

∫ Lv

0
ψ
†(0)
h Hhψh dz = Ehuh

− h̄2

2m0

dψ†(0)h

dz


γ1+ 2γ2 0 0 0

0 γ1+ 2γ2 0 0
0 0 γ1− 2γ2 0
0 0 0 γ1− 2γ2

ψh

z=0

.

(3.15b)

Now we can use the boundary condition equations (3.9) to replace the coupled envelope
functions with the matching derivatives at the interface between the layers,z = 0. As
was mentioned above, the right-hand sides of equations (3.9) are of a higher order of the
perturbation theory than the left-hand sides. So in the right-hand sides of equations (3.9),
we can replace the perturbed wave-functions with the unperturbed ones, with the help of
equations (3.12), neglecting the contributions from the higher levels. We substitute the
expressions for the coupled envelope functions in equations (3.15), and equation (3.14) now
has the form (

Ee w

w† Eh

)(
ue
uh

)
= E

(
ue
uh

)
(3.16)
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where

w = − h̄2

2me

h̄2

2m0

(γ1+ 2γ2)B†
AeA1/2− |B|2

[
∂ψ
†(0)
e

∂z

∂ψ(1/2)(0)

∂z

]
z=0

. (3.17)

In equation (3.16), we neglected the contribution of the coupling to the diagonal terms.
This is justified by the smallness of these corrections in comparison with the decoupled
spectraEe andEh. We would like to express the light-hole component in terms of the
heavy-hole component. We can use the effective Schrödinger equation for this. In the case
wherekLv � 1, the equation can be reduced to

d2ψ(1/2)(0)

dz2
+ λ2ψ(1/2)(0) = 2

√
3γ3

γ1+ 2γ2
(iσzkx − ky)dψ(3/2)(0)

dz
(3.18)

where

λ2 = (γ1− 2γ2)π
2

(γ1+ 2γ2)L2
v

. (3.19)

We assume thatλLv � 1, and considerψ(3/2)(0), ψ(0)
e as solutions for infinite quantum

wells. Thez-dependent parts of these envelope functions will be

ζ
(0)
3/2(z) =

√
2

Lv
sin

πz

Lv
ζ (0)e (z) =

√
2

Lc
sin

πz

Lc
. (3.20)

Now we can solve equation (3.18) with the help of equation (3.20). The substitution
of the electron function, and ofψ(1/2)(0) expressed in terms ofψ(3/2)(0), in equation (3.17)
gives

w = h̄2

2me

h̄2

2m0

B†
√
γ 2

1 − 4γ 2
2

AeA1/2− |B|2
√

3γ3

γ2
(iσzkx − ky) 1√

LcLv

π

Lc

cos(λLv/2)

sin(λLv/2)
cosλLv. (3.21)

It is instructive to compare the results of this calculation with the approximate boundary
condition for scalar electron and hole envelope functions:

ψv = a2

2

√
mh⊥
me

(
∂

∂x
+ i

∂

∂y

)
∂ψc

∂z
ψc = −a2

2

√
me

mh⊥

(
∂

∂x
− i

∂

∂y

)
∂ψv

∂z
(3.22)

where
1

mh⊥
= γ1− 2γ2

m0
. (3.23)

ψc is the electron envelope function, andψv is the hole envelope function which corresponds
to the heavy-hole component. From these boundary conditions, one can derive an equation
similar to equation (3.16), where now

w = h̄2

2
√
mh⊥me

π2a2

(LcLv)3/2
(ikx − ky). (3.24)

If λLv � 1, then comparison gives

a2 = h̄2

√
m0me

B†
√
γ1+ 2γ2

AeA1/2− |B|2
√

3γ3

γ2

Lv

π2
. (3.25)

As was mentioned in the previous section, the units of the interface matrix elements are
energy multiplied by length, and the scales are the atomic scales, so a good approximation
will be A ∼ B ∼ (h̄2/mlha0), wheremlh = m0/(γ1+ 2γ2) is the effective mass of the light
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hole. With the help of this approximation, we obtaina2 ∼ a0L. We used these simplified
results for deriving an analytic model for the calculations of the spectrum of the system,
including the self-consistent potential [45].

We compare these results with the results of the effective bond–orbital technique [46],
that are in agreement with the Ando and Mori conditions [33, 38]

ψv = −a
2

√
mh

me

∂ψc

∂z
(3.26a)

ψc = −a
2

√
me

mh

∂ψv

∂z
(3.26b)

wherea is the scale of the lattice constant. We see that the major difference between the
results is the dependence of our boundary conditions on the in-plane vectork‖. We assumed
the wells to be narrow, so the overlap is only between the first electron sub-band and the
first heavy-hole sub-band. At the centre of the band, wherek‖ is small, the light-hole
components of the hole function are small in comparison with the heavy-hole components.
However, the coupling is only between the light holes and the electrons, which have the
same projection of the total angular momentum on thez-direction. Hence the coupling
should depend on the in-plane vector, and therefore the boundary conditions should contain
derivatives with respect to the in-plane coordinates. In this sense, our simplified results
(equation (3.16)) resemble Fasolino and Altarelli’s results [47]; they calculated the energy
spectrum for InAs/GaSb superlattices in the presence of a magnetic field. The off-diagonal
terms in their effective Hamiltonian depend on the in-plane vectork‖.

4. Conclusions

Boundary conditions at the InAs/GaSb interface are derived. The conditions take into
account the complex band structure of the holes, the symmetry, and the different spin
structures of the wave-functions on either side of the interface. The general boundary
conditions match simple parabolic 2-spinor InAs electrons, and highly anisotropic, non-
parabolic, degenerate 4-spinor GaSb holes. In the case in which only the ground hole
sub-band is important, simplified boundary conditions are obtained from the general ones.
For the derivation of the conditions, we used a variational approach that can be applied
also for other heterostructures. Various kinds of popular simplified boundary condition are
obtained as different extreme cases of the general conditions. We used these boundary
conditions to calculate the energy spectrum of the carriers in InAs/GaSb quantum wells,
without losing the important features of the hole spectrum. The results reveal that very
interesting phenomena are exhibited by the spectra of the system, and these will be presented
in a future publication [19].

References

[1] Mendez E E, Esaki L and Chang L L 1985 Phys. Rev. Lett.55 2216
[2] Halperin B I and Rice T M 1968Rev. Mod. Phys.40 755
[3] Kuramoto Y and Horie C 1978Solid State Commun.25 713
[4] Datta S, Melloch M R and Gunshor R L 1985Phys. Rev.B 32 2607
[5] Keldysh L V 1994 Bose–Einstein Condensationed A Griffin, D W Snoke and S Stringari (New York:

Cambridge University Press)
[6] Zhu X, Quinn J J and Gumbs G 1990Solid State Commun.75 595
[7] Xia X, Chen X M and Quinn J J 1991Phys. Rev.B 46 7212
[8] Naveh Y and Laikhtman B 1996Phys. Rev. Lett.77 900



InAs/GaSb interfaces; the problem of boundary conditions 8729

[9] Cheng J-P, Kono J, McCombe B D, Lo I, Mitchel W C and Stutz C E 1995Phys. Rev. Lett.74 450
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